DNA Repair, Alteration and Replacement

Targeted genome engineering involves editing or altering endogenous DNA in a directed manner at a specific site along the DNA within the cell.


Despite the tremendous potential of gene repair and homology-directed gene alteration, current genome engineering approaches provide very low efficiency of repair or editing and have the potential to introduce harmful or undesired DNA sequences and outcomes. Therefore, there is a need to develop more effective methods of targeted genome engineering, that are stable in biological environments and that allow for greater cell transfection and transgene expression.

MiniVectors can be used for as a template for homology-directed repair, alteration, or replacement. DNA MiniVectors (as small as 300 bp) display remarkable transfection efficiencies in all cell types tested, including cell types, such as suspension cells, T-cells, dendritic cells, that are typically recalcitrant to transfection with plasmids. There is great potential for use of this invention in gene replacement therapies and for genetic reprogramming of human diseased cells. Genomic, mitochondrial, chloroplastic, or extrachromosomal sequences that are mutated, needing repair, needing to be altered or replaced, needing to be added, deleted, duplicated, or inverted may be fixed in vivo using MiniVectors as a template for DNA corrections or as the piece of DNA that is inserted (“flipped in”) or integrated during the process known as gene replacement.

Small, supercoiled DNA MiniVectors are non-viral gene-therapy vectors, which are almost completely devoid of bacterial sequences for use as a template for homology-directed repair, alteration, or replacement. Because of their small size, these MiniVectors are transfected with high efficiency. The lack of bacterial sequence allows for an optimal donor template design containing only the desired DNA sequence in a double stranded and supercoiled, bioactive form.